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ABSTRACT data distribution of a database.

- . L There are two classes in selectivity estimation problems
The database query optimizer requires the estimation of the quenyccording to the dimensionality. One is the 1-dimensional

selectivity to find the most efficient access plan. For queriesgglectivity estimation and the other is the multi-dimensional
refer_en_cmg multlple attrlb_u_tes fror_n th_e same re_Iatlon, we need %electivity estimation. The estimation of the result size of a query
multi-dimensional selectivity estimation technique when the \ith a single attribute predicate depends on the data distribution
attributes are dependent each other because the selectivity |§ the attribute. This case is the 1-dimensional selectivity
determined by the joint data distribution of the attributes. ggiimation problem. Regarding the multi-dimensional selectivity
Additionally, for multimedia databases, there are intrinsic ggtimation, there are several applications that require it. The
requirements for the multi-dimensional selectivity estimation ontimization of a query referencing multiple attributes from the
because feature vectors are stored in multi-dimensional indexingsme relation needs it. because the result size of the query depends
trees. In the 1-dimensional case, a histogram is practically thy, the joint data distribution of the attributes that is represented as
most preferable. In the multi-dimensional case, however, a5 mylti-dimensional space [P197]. So do the optimization of fuzzy
h!stogram is not adequate because of high storage overhead a'ﬁﬂjeries for multimedia repositories [CG96, Fa96, Fa98] and
high error rates. database ranking for selecting resources in a distributed

~In this paper, we propose a novel approach for the multi-gnyironment such as the World Wide Web [CSZS97], because the
dimensional selectivity estimation. Compressed information fromfeatyre vectors of multimedia data are stored in multi-dimensional
a large number of small-sized histogram buckets is maintaineqnqex trees.

using the discrete cosine transform. This enables low error rates variety of techniques were proposed based on how to

and low storage overheads even in high dimensions. In additiony,nroximate the data distribution. An excellent survey and the
this approacr_l _has_ the advantage of supporting dynamic _dat?axonomy of various selectivity estimation techniques appeared in
updates by eliminating the overhead for periodical reconstructlonTMCSQ& CR94, PIHS96]. 1-dimensional selectivity estimation
of the compressed information. Extensive experimental result§echniques are classified into four categories: the parametric, the
show advantages of the proposed approach. curve fitting, the sampling, and the non-parametric. Among these
classes, the histogram method in the non-parametric class is the
most preferable because it approximates any data distribution and
1. INTRODUCTION requires reasonably small storage with low error rates. And it does
The database query optimizer chooses an efficient execution plafet incur run-time overheads. Several histogram techniques were
among all possible plans by estimating the cost of each plan. Ongroposed in order to reduce estimation errors[PIHS96]. For the
of the most important factors for computing the cost of a plan ismuylti-dimensional selectivity estimation, several estimation
the selectivity, which is defined as the ratio of the number of datQ:echniques were proposed: the method using the multilevel grid
in a query result to the total number of data in a database. Thﬁle(MLGF)[WKW94], the singular value decomposition(SVD),
accuracy of the selectivity estimation significantly affects the Hijlpert numbering, PHASED, and MHIST [PI97]. These are all
selection of an efficient plan. The selectivity can be estimatedbased on histogram techniques. And these were proposed under
using a variety of statistics that are kept in a database catalog. Th@e assumption that a histogram method is also efficient in the
statistics for the selectivity estimation usually approximates themy|ti-dimensional selectivity estimation as it is so in the 1-
*This research was supported by the National Geographic Informatiorflimensional case. However, the situation of the multi-dimensional
Systems Technology Development Project and the Software Technologgase is very different from that of the 1-dimensional case. In order
Enhancement Program 2000 of the Ministry of Science and Techndiogy oto achieve low error rates, the size of histogram buckets must be
Korea. small. As the dimension increases, the number of histogram
buckets that can achieve low error rates increases explosively. This
is because the number of histogram buckets is in inverse
proportion to the dimension'th power to the normalized one-
dimensional length of a partitioned multi-dimensional bucket as
expressed by an equation below. It causes a severe storage
overheads problem.

#of buckets a”%, O<a<l1,

where a is the 1-dimensional length of a bucket.



Therefore, it is impossible to maintain a reasonably smallestimation results will be very high. And we must know a priori
storage with low error rates in high dimensions. Also it is difficult which model function fits the actual data distribution. If the actual
to partition a multi-dimensional space into disjoint histogram data distribution does not fit any known model function, we
buckets efficiently so that the error rates are kept small. From aannot use this method. The curve fitting method was proposed to
practical point of view, these methods cannot be used inget more flexibility than the parametric method. This method uses
dimensions higher than three. Another problem is that all methods general polynomial function in fitting the actual data distribution.
except the MLGF method cannot reflect dynamic data updatesThe advantage of this method is that it can approximate any data
immediately to the statistics for the estimation. This leads to andistribution. However, it has the negative value problem and the
additional overhead such as the periodical reconstruction ofrounding error propagation problem. So, we must be careful to use
statistics for the estimation. this method. The sampling method is mainly used for statistical

In this paper, motivated from the above problems, we proposeajueries that have aggregate functions. It retrieves sample data
a novel approach for the multi-dimensional selectivity estimation. from a database and applies the sample data to a query in order to
The contents and contributions are as follows: Compressedet statistics of the query. The sampling method must take enough
information from a large number of small-sized buckets is sample data to achieve the desired accuracy. The query
maintained using the discrete cosine transform (DCT). Thisoptimization that requires frequent selectivity estimations cannot
enables low storage overheads and low error rates even in highse this method due to its high performance overheads. The
dimensions. This can be achieved from the fact that DCT carhistogram method is the most common non-parametric method.
compress the information remarkably. That is, low error rates canThe histogram method divides the data distribution into a set of
be achieved by small-sized buckets and low storage overheads camall disjoint intervals, in other words, buckets, to approximate
be achieved by compressing a large amount of histogram buckehe data distribution, and stores some statistics in each bucket such
information. As another contribution, as far as we know, this is theas value range and the number of data in a bucket. The histogram
first application in which DCT is used in high dimensions. DCT method is based on the uniform distribution assumption which
has been widely used in the image and signal processing aremeans that data in a bucket are uniformly distributed. The
usually in 2-dimensional domain. Therefore, we also extend DCTselectivity estimation using a histogram is as follows: First, all
from two dimension to high dimensions. In addition, this method buckets overlapping with the query are selected. The statistics in
has the advantage that it is not necessary to reconstruct statistiesich bucket is used to compute the number of data that satisfy the
for selectivity estimation periodically, because it reflects dynamic query. The numbers of the satisfied data from each bucket are
data updates into the statistics for the estimation immediately. Arsummed up to get the final estimation result.
extensive set of experiments show that the method proposed in The histogram method is practically the most preferable
this paper requires low storage overheads, achieves low error ratesmong the ones in four classes because it is possible to make a
and provides fast computations of the estimation even in highhistogram that approximates any data distribution with reasonably
dimensions. small storage and low error rates. Therefore it is widely used in

The paper is organized as follows: In Section 2, we describe 1many commercial databases. The histogram method is again
dimensional and multi-dimensional selectivity estimation classified into various methodscording to how to partition the
techniques as well as their advantages and disadvantages. buata distribution into buckets in order to minimize the estimation
Section 3, we introduce the discrete cosine transform. In section 4error: the Equi-width, the Equi-depth, the MaxDiff, the V-optimal
we explain how discrete cosine transform can be used in the multimethod, etc. In the Equi-width, the widths of the buckets are equal,
dimensional selectivity estimation. In Section 5, we show and the number of data in each bucket approximates the data
experimental results and discuss them in detail. Finally, distribution. In the Equi-depth, each bucket has the same number

conclusions are made in Section 6. of data, so the widths of the buckets are different. In the MaxDiff,
there is a bucket boundary bewteen twae€it values when the
2. RELATED WORK difference of these values are among the largest. In the V-optimal,

the sum of weighted variances of buckets is minimized. The V-
optimal method has been shown to be the mostirate histogram
method [IP95, JKMPSS98].

2.2 Multi-dimensional Selectivity Estimation

The optimization of fuzzy queries for multimedia repositories
needs a multi-dimensional selectivity estimation technique.
'Chaudhuri[CG96] used the result using the correlation fractal
dimension [BF95] as the selectivity estimation. However, the
selectivity using the correlation fractal dimension is the average of

; . the estimation results for the same shape and size queries and can
JKMPSS98]. The parametric method approximates the dat e practically used in two and three dimensions. For queries with

dlstrlbuthn of an atmbL.'te to a_model function such as normal’multiple attributes, there is an estimation method that uses a multi-
exponential, Pearson, Zipf function, and computes free parameterg; o nsional file organization called the multilevel grid file

for the model function under the assumption that the data - e .
distribution well fits the selected model function. The advantage(MLGF) [WKWS4]. MLGF partitions the multi-dimensional data

of this method is that it requires a little storage, incurs low space into several disjointodes, called grids, that act as

. . histogram buckets. A new field, count, is adde@doh gridnode
computation overheads, and provides accurate results when t%r saving the number of data in the grid. The selectivity is

data distribution fits the selected model function. However, if the __.. . . : . .
data distribution does not fit the model function, the error rates Ofestlmated by accessing gbdes overlapping with a query. This

First, we briefly describe 1-dimensional selectivity estimation
techniques and explain multi-dimensional estimation techniques
and then discuss their problems.

2.1 One-dimensional Selectivity Estimation

Selectivity estimation techniques can be classified into four
categories: the parametric method by model functions [Chri83]
the curve fitting method by general polynomial functions [CR94,
SLRD93], the sampling method [HNSS95], and the non-
parametric method by histograms [l093, P95, PIHS96,



method supports dynamic data updatesabise MLGF itself is a = (g(0),g(1),...,g(N-1)), are defined as follows:
dynamic access nfatd. And itaccurately estimates the result size 2 N4 E(Z” +1)ur
of a query. However, MLGF suffers from the dimensionality curse 9(u) = Z f(n)co 52N @
[BBK98] that means severe performance degradation in high

dimensions. Also the method has the maintenance overhead of K = %1 foru=0 ;u=0,...N-1
MLGF. So, the method can not be applied in dimensions higher ! 512 foru#0
than three.

Recently, Poosala et al.qposed several useful methods for F = (f(0),f(1),...f(N-1)) is recovered by the inverse DCT defined
the multi-dimensional selectivity estimation [P197]: The Singular as follows:
Value Decomposition (SVD), the Hilbert numbering, the 2n +1)UHB n=0,.
PHASED, and the MHIST methods. These methods are based on f(n) = kug(u)co 5N
Lhe 1- dlmensmna}I hlsgogramdmethﬂd undler(;[he assum;:l)tlonI that thf dimensional DCT was extended to 2 dimensional DCT as
istogram can also be used in the multi-dimensional selectivity,
estimation. So, these methods partition the joint data distribution follows: Let [Fl, be an MxN matrix representing the 2-

"dimensional data and3], be the 2-dimensional DCT coefficients
into disjoint buckets. The SVD method decompose the joint data ax [F],. Then the elementify) of [G], is given by

distribution matrixJ into three matricet), D, andV that satisfy MoiN-1

J=UDV". Large magnitude diagonal entries of the diagonal matrix  g(u,v) = 2K, ZZ f (m,n)co [(2m+1)un5cosé(2n+l)vn§
D are selected together with their pairs, left singular vectors from vM n= 2N

U and right singular vectors froM. These singular vectors are whereu 0,...M-1andv=0,...N-1

partitioned using any one-dimensional histogram method so as t8Y the separability property [RY90, Lim90] of the 2-dimensional
be used as histogram buckets of the attributes. There are marfyCT. (U, V) can be rewritten as follows:

efficient SVD algorithms, but the SVD method can be used only ¢ (@n+Yvrel  [(2m+YurO
in two dimension. The Hilbert numbering method converts the 9uv) =\ m; Z (m n)co 2N %p SH M H
multi-dimensional joint data distribution into the 1-dimensional
one and partitions it into several disjoint histogram buckets using Mo Nt 0
any one-dimensional histogram method. The buckets made by thig (m,n) = \F D\r K g(u,v)cosé(zn Dvrr Sé(2m+1)urr|]
method may not be rectangles. Therefore, it is difficult to find the ovN 2N %p 2w H
buckets that overlap with a query. The estimates may be inaccuratdow we generalize the above to tHedimensional DCT
because it does not preserve the multi-dimensional proximity in 1+ecursively as follows:

dimension. The PHASED method partitions an n-dimensionalLet [F], be N;xNyx...xN, k-dimensional datalet u(t)=(uy,...,u)
space along one dimension chosen arbitrarily by any one{] (u,,...,u) andn(t)=(ny,...,n) O (ny,...,n) for 1<t < k andu; =
dimensional histogram method, and repeats this until allg,...N-1,m =0,...N-1for I<i<k Let [G] be DCT coefficients
dimensions are partitioned. The MHIST is an improvement to theof [F], . We defineG(u(t)) F(u(t)) as follows:

Its inverse is as follows:

PHASED method. It selects the most important dimensieaah N~ 2n, + 1)U,
state and partitions it. From the V-optimal point of view as an G(u(t)) = \F ZJG(u(t 1))CO%T‘E
applied partitioning method in MHIST, the dimension that has the t
largest variance is the most important dimension. The experiments Gu) = \/7 £ (M., ) CO 2n, +1)u1rr%
in [PI97] showed that MHIST technique is the best among a Z) Bk % 2N,
variety of multi-dimensional histogram techniques. However, even

though it produces low error rates in 2-dimensional cases, it has F(n(t)) = k F(n(t -1)co 2n, +1)ut"%
relatively high error rates in the 3-dimensional space (20-30 %) N‘ i= 2N,

and the 4-dimensional space (30-40%). This demonstrates that it is _ N1 2n, +u,T
not easy to segment multi-dimensional spaces into disjoint F(u@) = N, 2 knlg(ul,...,uk)co%TE

histogram buckets efficiently. These methods cannot be used i hen kedi ional DCT ficients is ai _
dimensions higher than three. In addition, the database syste% en, xeimensiona coetlicients 1S given U, ..U -
must reconstruct the statistics periodically in an environment (U(K). And the inverse DCT transform is given ffy,...,uJ =
where data is updated frequentlgchuse the miedd do not F(u(k).-

support dynamic data updates. 3.2 Properties of Discrete Cosine Transform
DCT has many desirable properties as follows:
3. DISCRETE COSINE TRANSFORM (1) DCT is a linear transform. Ldtc be DCT anda,B3 be the

calar values, and lety be the generdt-dimensional data. Then

The discrete cosine transform has been widely used in the imag N .
e following linearity holds:

and signal processing areas usually in the 2-dimensional domai
because it has the power to compress information. However, we Fe(ax+ By) = aFc(X) + BFc(Y)

should use the multi-dimensional DCT for compressing the(2) DCT is separable. This means that the 2-dimensional DCT can
histogram information. Therefore, we briefly describe the be reduced to the 1l-dimensional DCT which enables the row-
definition of the 1-dimensional DCT, the 2-dimensional DCT and column decomposition which is the basis of fast algorithms.
extend them to the multi-dimensional DCT. (3) DCT preserves the energy in the transformed domain as

3.1 Definition of Discrete Cosine Transform Parseval's theorem says that

_ 2
For a series of dat& = (f(0)f(1),...f(N-1)), DCT coefficientsG Z (g ‘f(nl’ nk)‘ Zu ----- Uy \g( 1""’uk)‘
n,u=0,...N-1,i=1,...k



(4) DCT has the property of energy compaction. DCT reduces thé=irst, we consider the efficient sampling method to select low-
correlation among transformed coefficients. This property isfrequency coefficients that have large values. Second, we describe
related to the energy compaction. That is, if data adjacent to eactvhat is the constraint of the data distribution to compress the
other in the data distribution are highly correlated, DCT can histogram information efficiently. Third, we explain how to
reduce the correlation between adjacent transformed coefficientssupport dynamic data updates to reflect it to the statistics
And if the frequency spectrum of a data distribution is skewed inimmediately. Fourth, we describe how to simply calculate the
which the magnitudes of low frequency coefficients are large selectivity estimation.

while those of high frequency coefficients are small, we cang 1 Geometrical Zonal Sampling
discard the high frequency coefficients without seriously affecting_l_k']e size of the histogram bucket should be maintained small

the original dada distribution [AFS93]. Since discarding the high ough to get a low error rate in high dimensionality. The number

frequency coefficients causes an error, we measure this error as ﬂi DCT coefficients transformed, however, increases exponentiall
mean square error (MSE). ’ ’ P y

as the dimensionality increases. If we choose appropriate

MSE= Z(n1 ..... nk)(f(nl’""nk)_ f (nl""’nk))z coefficients after all coefficients are computed, it causes a severe
n=0,...N-1,i=1,...k computation overhead. Therefore, we must choose and compute

wheref'(ny,...,ny) is computed by applying the inverse DCT with only the coefficients that are estimated to have large values. To
truncated DCT coefficients. select the appropriate DCT coefficients, we use the 2-dimensional

There are many other transforms such as the discrete Fouriggeometric zonal sampling technique that is used frequently in the
transform (DFT), the Harr transform, the Hadamard Transform,area of digital signal processing [RY90, Lim90] and extend it to a
and the Karhunen Loeve Transform (KLT). They differ in energy multi-dimensional technique. Only those transformed coefficients
compaction and in computational requirements. From the energyithin a specified zone are processed, with the remaining ones set
compaction point of view, KLT is the best transform. That is, KLT to zero. This selection corresponds to low frequency filtering.
is the transform that minimizes the MSE for truncated coefficients.There are several zonal sampling techniques: The triangular, the
However KLT has a serious practical problem. There is noreciprocal, the spherical, and the rectangular zonal sampling. Fig.1
computationally efficient algorithm for KLT. However, DCT has a
good energy compaction property as well as computationally o
efficient algorithms. Also the energy compation power of DCT is
superior to all other transforms except KLT [RY90,Lim90].
Therefore DCT is most widely used in various applications. &
Typical applications of DCT are the visual telephony and the joint :
photographic expert group (JPEG). :

0,1,2,3, ... ,N-1 0,1,2,3, i ,N-1

e 70

-N‘
.[_Nn

4. SELECTIVITY ESTIMATION USING
DISCRETE COSINE TRANSFORM

As explained in Section 1 and 2, a histogram method cannot be
directly used in the multi-dimensional selectivity estimation. As =
alternatives, we can consider parametric and curve-fitting methods.“:
The former has the same constraint in a multi-dimensional space,
as in the 1-dimensional space, that is, the model funckionld :
fit the data distribution in some degree. When the constraint does:
not hold, the accuracy degrades. The latter uses a polynomial
function for fitting a curve. But it uses an independent variable for E =
every dimension and the number of coefficients in a multi-variable (c) Spherical (d) Rectangular
polynomial function increases rapidly as the dimensionality ) ) .
increases. It also suffers from the problems of the oscillation Fig 1. Geometrical Zonal Sampling
(negative values) and rounding errors. in 2-dimensional case

We propose a curve-fitting method using DCT. In this method (a)~(d) shows only 2-dimensional cases of 4 geometrical zonal
we use a uniform grid as histogram buckets in a multi-dimensionakampling methods for easy visualization. The triangular method is
space. From now, this grid is called a uniform histogram bucketto select the coefficients within the triangle in a 2-dimensional
In case a data distribution is highly correlated, DCT makes itcase as shown in Fig.1(a). It selects DCT coefficieg(is,,us),
possible for a few data items to represent the whole data byych that the sum of andu, is less than or equal to a given value
compressing information of the data distribution. We also can g€l that is,Up+U,<b for u,=0, ... Ny-1 andu,=0, ..., N-1. In a multi-
the original distribution by the inverse transformation with low §imensional case, it selects DCT coefficierd@y, ...,u;), such
error rates. This method solves the problem of the high storag
overheads and higher error rates in high dimensional spaces, singgat
it uses a large number of small-sized multi-dimensional histogram =t . ) )
buckets while compressing information from histogram buckets,coefficients by this sampling with lemma 1.

There are various considerations to estimate the multi-dimensional .
selectivity by using DCT: coefficients sampling, data distribution, Leémma 1) The number of DCT coefficients selected by the
DCT computation and maintenance, and selectivity computationfriangular zonal sampling is given BCrinn) » if the condition

(a) Triangular (b) Reciprocal

et 0

iu_ <p forui =0,...,N-1. We know the number of DCT



b<N, is satisfied.
Table 1 shows various values of n and b.

u; = 0,..Ni-1. This method chooses more high-frequency values in

Table 1. The number of DCT coefficients selected
by the triangular zonal sampling

The reciprocal method is to select the coefficients such that thgP197]. Actually in the areas like data mining, the techniques to
multiplication of indices is less than or equal to a given vhlue

. . . n
That is, the selection is made by the constrfnl\tui +1)<b for
=

each dimension than the previous hegt. The spherical zonal

sampling method is to select the coefficients such that the sum

the square of indices is less than or equal to a given balinat
is,iu_z <p foru =0,...Ni-1. It chooses the coefficients within
&

4.2 Data Distributions
In order to be able to compress a great number of histogram

b=1 b=2 b=3 b=4 b=5 b=6 buckets into a small amount of information with low estimation

error rates by using DCT, the data distribution should have certain

n=1| ,C;=2 | 3C;=3 | ,C=4 | sC;=5 6C1=6 C=7 characteristics. The distribution should have high correlation
among data items. That is, the frequency spectrum of the

N=2| sC1=3 | 4Co=6 | sC=10| 6Co=15 | 7C=21 | ¢Co=28 distribution should show large values in its low frequency
- - - - - — - coefficients and small values in its high frequency coefficients

M=3) C1=4 1 5Co=10| 6Ca=20| Co=35 | §Ca=56 | oCa=84 [AFS93]. If the data distribution does not follow the above
n=4| :C,=5 | {C,=15| ;C5=35| 5C,=70 | 4C,=126 | 14C,=210 characteristics, that is, data are totally independent of adjacent
data, we cannot have the benefits of energy compaction and

N=5| 6C1=6 | 7C2=21| gC3=56 | ¢C4=126 | 10Cs=252| 1,Cs=462 cannot reduce the number of coefficients without distorting the
— — — — — — — original data distribution. We believe that data in a real data
N=6| 7C1=7 | 62728 oCs=841 10C4=210| 11Cs=462 12C6=924 distribution are highly correlated. There are many cases that data

are correlated. It is natural for the joint data distribution of
multiple attributes from a relation to have clusters in most cases,
since the attributes are in general closely dependent each other

find such clusters are practically used for extracting useful
knowledge from a large volume of databases [GRS98, EKSWX98,
ZRL96, NH94]. The clustering effect can also be seen in
multimedia databases like images and in spatial databases
[EKSX96, SCZ98]. The large-sized shapes of a cluster correspond

otfo large-valued low frequency coefficients while small-sized

variations in it correspond to small-valued high frequency

coefficients. Therefore, the mean square error between the actual
data distribution and the distribution recovered by selected low
coefficients is usually small. Based on these observations, we can

the area of a circle in the 2-dimensional case and a sphere in the geduce the number of multi-dimensional histogram buckets
dimensional case. The rectangular zonal sampling method chooseemarkably. In general, as the skewness of data distributions grow
the coefficients such that the maximum value of indices is lessor the number of clusters increases, the number of large-valued
than or equal to a given valbethat is,maxg,,u,,...,u,) <b for u; high frequency coefficients tends to increase. It means more
= 0,...N-1. It chooses the coefficients within the area of a COefficients are needed to keep low error rates.
rectangle. _ _ ~ 4.3 Dynamic Data Update

Table 2 shows the sampling ratio of each zonal samplingyt is jmportant to reflect dynamic data updates to the statistics for
methods. As the dimensionality increases, the number Ofgstimating selectivity immediately in the environment where data
coefficients chosen by the triangular zonal sampling and thegre frequently inserted or deleted. Except the MLGF method, most
reciprocal zonal sampling increases slowly, while the total numberys multi-dimensional selectivity estimation techniques, such as
of histogram buckets increases explosively. However, the numbef,y ST, SvD, PHASED, and Hilbert numbering, cannot reflect
of selected coefficients by the spherical and rectangular zonajynamic data updates into the histogram immediately. In other
sampling method increases somewhat rapidly. words, when the number of data updatemches a certain

threshold, the histogram should be reconstructed entirely. In

# of selected coefficients (% ratio to # total buckets)
. # of total Triangular Reciprocal Spherical Rectangular
dim N;
buckets b=6 b=14 b=22 b=3

2 50 2500 28(1.1%) 41(1.6%) 22(0.44%) 16(0.64%)
3 25 15625 84(0.54%) 86(0.56%) 87(0.56% 64(0.41%)
4 15 50625 210(0.41% 153(0.3%) 305(0.6% 256(0.5190)
5 10 100000 462(0.46% 226(0.23% 973(0.97%) 1024(1%)
6 262114 924(0.35% 333(0.13% 2882(1.1%) 4096(1.6P0)
7 823543 1716(0.21%) 477(0.058%)  8080(0.98%0) 16384(2%0)
8 1679616 | 3003(0.18%) 601(0.036%) 21772(1.3%) 65536(3.p%)

Table 2. The ratio of the number of selected coefficients by the zonal sampling to the total number of uniform histogram bucket
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contrast, our proposed method can reflect dynamic data updates @ssume the data space is normalized as"(Qjhigx coordinate is
the statistics for estimating the selectivity with reasonabledivided into N partitions andy coordinate is divided intdv
overheads. This is enabled because DCT is a linear transform. Iggartitions. Then'th positions ofx,y (x andy;) are as follows:
process is as follows: When data is newly inserted, the values of 2 +1 % +1
its DCT coefficients are computed and added into existing DCT = Yi =
coefficients. In case of deletion, the values of DCT coefficients of . 2N oM . .
’ ! L hen we can rewrite the inverse DCT functf@m,n) in section

the deleted data are computed and subtracted from existing DC )

g . . ; . .1 as follows:
coefficients. Therefore, we can immediately reflect data insertions

and deletions into the statistics for estimating the selectivity byf X V) = 7M_lk E\FN_I U.V) cOSKVIT O os(urT
(%) ‘/Mu; 0 Nv:kvg(,) & )BC (yurr)

processing only the update data.
Example 1) We show an example for a 2-dimensional case. Let . d b
[F], be the current uniform histogram buckets a6, [be the  Selectivity of a querg, :_L_Lf(X, y)dxdy

current DCT coefficients of],. Let [F'], be some data updates o [2Ms Oz .
which represents that one data in (0,1) and two data in (1,2) aréJ’cLF k“D\FZ k,g(u,v) cosxvrr)cos(yurr) dxdy
deleted and two data in (2,0) are newly added. Anqddgt, be M& OINE ad

ici ' " i i _ M- [ N-1 O
DFZT coefficients of [F1],. Let. [F", be thg .flnal uniform _J,d /i K \E K, g(u.v) costmdx cosum)dy
histogram buckets anpz"], be final DCT coefficients of "], . c\M & A\ N & 0

Then[F"]z :[F]z +[F']2 and[G"]z =[G]2 +[G']2' ~ d b
N\/E\/Ezg(“mz kukvg(u’v)‘[: cos@ny)dyj’acosslm)dx

\z

015 BE 540333 —2858 _5'4215 whereZ is the set of selected coefficients from zonal sampling
[FI,=r14 20 16g nBH- [G], =02041 -0500 -0.289] Now, we generalize the above integral to thdimensional
H9 13 11@ 5-6.835 -0.289 1.167E case. Letgy be ak-dimensional range query. The range of the
querygeis & < x < b for 1 <i <k, which is represented as
-1 0 B—O.SSS 1.633 0.4715 (ar~by,...,ax~b). The x coordinate is devided intb} partitions.
[Fl,=® 0 -20 O R . [G'],=-1.225 -1.000 0.0007 Then the selectivity is expressed as formula (1), (2).
B o of H1179 -0577 1333
0 14 13 4000 ~1.225 495 I5 EXPERIMENT,:\L EVALUAf\TrI]ON .
"o BT o = ~ ~ n order to measure the accuracy of thepmsed method in
[Fl. =004 20 1400 -[G"];=00816 -1.500 -0.289] estimating the result sizes of queries, we conducted
H1 13 117 5657 -0866 2500( comprehensive experiments over an environment containing
various synthetic data distributions and various queries. All data
4.4 Selectivity Estimation of Range Queries are generated in the normalized data space"(OM were not

There are two kinds of methods to compute the selectivity of a@Plé 0 make detailed comparisons with the previous
range query. The first method finds all histogram buckets within "€SUlts[WKW94, P197] because the existing inoets showed high
the query range using the inverse DCT, and then computes thg/T0rs in high dimensions be_yond 3 dlm_ensmn. For_exam_ple,
selectivity as the histogram method does. It assumes the uniford!HIST shows somewhat high errors in the 3-dimension
data distribution within a bucket like the existing histogram (20~30%) and the 4-dimension (30~40%), and the MLGF method
methods. The second method computes the selectivity using the&nnot be used in dimensions higher than three. _
integral of the inverse DCT function since the function is a  Synthetic data are generated with 50K records which ranged
continuous cosine function. The former method needs the invers§om 2 to 10 dimensions. We generated data with various
DCT computation for each bucket information while the latter distributions:
simply computes the selectivity without the computationefach o )
bucket information count since it computes the integral of thel- ~ Normal distribution : The data points follow N¢S) where
inverse DCT function only for the interval of the query range. 0 = 0.4 for 2~4 dimensions, = 1.0 for 5~10 dimensions.
Since the inverse DCT function naturally supports the continuous?- ~ Zipf distribution: The data points follow the Zipf
interpolation between contiguous histogram buckets, the second  distribution where z = 0.3 for 2~5 dimensions, z = 0.2 for
method providesiccurate results. The following is the expression 6~10 dimensions. The Zipf distribution is defined as
of the integral to estimate the selectivity of a range query. follows:

First, we show the 2 dimensional case and generalize it to the
k-dimensional case. Lep be a 2-dimensional query. The range of
0, is asx<b, c<y<d, which is represented as (a~b, c~d). We



1 one DCT coefficient. If one use 100 DCT coefficients for

) iz wherdé =1,2,....N estimating the selectivity, 800 bytes and some book keeping bytes
f(i)= 1 1 1 are required.
—t+t_+ ~ From the selectivity calculation formula (2), we can estimate
r 2 N the the selectivity computation time as follows: Kfis the

3. Clustered distribution: 5~15 normal distributions are gimension andr is the timeto compute the sine function, the time
overlapped in a data distribution. to compute the selectivity is given by k2tr*(the number of
selected DCT coefficieptsTable 3 shows the typical selectivity

DCT coefficients are calculated as follows: A multi- estimation time. In Sun Ultra I is measured as aboutilsec.

dimensional space is partitioned into a large number of uniform

histogram buckets such that the number of partitions in each dimension # DCT=50 # DCT = 1p0 # DCT =200
dimension is the same as those of others. The total number of 3 300usec| 60Qsec | L2m sec
buckets is in proportion to the dimension’th power of the number H w )

of partitions in one dimension. In low dimensions, if the total 6 600u sec| 1.2 msec 2.4 msec
number of buckets is not quite large, we read data sequentially and

count the number of data #ach bucket and store them in the o 900u sec| 1.8 msec 3.6 m sec

array of main memory. Then we calculate only DCT coefficients  Table 3. The selectivity computation time in Sun Ultra I

that are selected by the zonal sampling using DCT. In high . . .
dimensions, since the number of buckets is very large, we cannot 't follows that the proposed method is efficient for time and
afford the memory space fopuenting the number of data in all SPace

buckets. So, we used an X-tree[BKK96] to get groups of data thab.2 Effect of Zonal Sampling

are close to each other by accessmgles of the X-tree. This  The zonal sampling selects low frequency coefficients. That is, it
enables to get the number of data in a small group of buckets at gts as a low frequency filter. Its effectiveness can be measured by

time for calculating DCT coefficients. o ~the mean square error. But this requires all values of uniform
The selectivity estimation method proposed in this paper ishistogram buckets by the inverse DCT, which is a very time
evaluated for range queries of the fornay<X;<b)&...& consuming job. So, instead we measure the effectiveness of the

(a=<Xy<by,), where &a;,bi<l. Four sets of 30 queries were made zonal sampling by percentage errors of queries. We make 30
such that each set represents a different range of selectivityjueries for each test and averaged their results. The efficiency of
large€0.3), mediun¥0.067), smalk0.0067), very small the zonal sampling is affected by distributions. We made
(=0.0013). There are two query models for the probability experiments for 3 different distributions in the 6-dimension: (1)
distribution of queries [PSTW93, BF95]: the random model, the Normal distribution (2) Zipf distribution (3) Clustered 15
biased model. The random model assumes that queries amistribution (that has 15 clusters). We apply the three zonal
uniformly distributed in the data space. That is, every part of datssampling methods to these data. We drop the rectangular zonal
space is equally likely to be queried. The biased model assumesampling in the 6-dimension because the number of selected DCT
that queries are more highly distributed in high-density regions.coefficients by rectangular zonal sampling increases very rapidly
That is, each data is equally likely to be queried. Most applicationswith a smallb value as indicated in Table 2. The results are shown
follow the latter model. For example, in GIS applications, usersin Fig. 2~4. The results show that the reciprocal zonal sampling is
are not likely to query the area of a dessert but are likely to querghe best for all distributions. The triangular zonal sampling
populated areas like a city. In image database applications, most afethod is the second. The spherical zonal sampling showed the
users may browse the images from a database and pick up thgorst performance. However, there are some threshold after which
most similar image that they want from the browsed images andhere is no difference between three zonal methods. Therefore,
search images similar to it. This means that queries are locatedhen we use a few DCT coefficients, the reciprocal zonal
more frequently in dense area in the data space. Sodopt the sampling is the best.

biased model as a query model in these experiments. For ea(@ 3 Effect of Dimension and Query Size

query, we generated 30 biased queries. The query results ang Fig. 5~7, we show the results of various query sizes in various

compared with the estimations using the proposed method in th'%imensions. Query sizes are large, medium, small, very small. The

paper. A percentage error is used for the accuracy of an eStImatlo(rj]imensions are varied as 2, 4, 6, 8, 10. The data distribution is the

result _ _ _ clustered 15 distribution. We use the reciprocal zonal sampling
P B |query result size - estimated result S'Ze| method as section 5.2 shows that the reciprocal zonal sampling is
ercentageerror = x 100% . .
query result size the best. Fig. 5 shows the results for using only 100 DCT
. o coefficients. Fig. 6 for 500 DCT coefficients and Fig. 7 for 2000
5.1 Storage Requirements and Selectivity DCT coefficients. As the dimension increases, the error rates
Estimation Time increase slightly, but the average error of queries is below 10 %.

The proposed method requires the storage of the statistics fof NS results show that the method in this paper can be used for
estimating the selectivity. The amount of the storage for theMigh dimensional data spaces. As the query size is decreased, the

method is proportional to the number of DCT coefficients selected®/TOr rates increase. This is a natural result because the percentage
by zonal sampling. We convert the multi-dimensional indices of a8mor iS magnified by the slight difference between an estimation

DCT coefficient to an one-dimensional value and vice versa SiZ€ and a query result size when the query result is small.
Therefore, one DCT coefficient needs 4 bytes for storing its value5.4 Effect of Data Distributions
and 4 bytes for storing its index. 8 bytes are required for storingThe data distribution has impacts on the error rates for estimating
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